Thermodynamically Traceable Calorimetric Results for Aqueous Sodium Chloride Solutions from T = (273.15 to 373.15) K up to the Saturated Solutions: Part 1—The Quantities Associated with the Partial Molar Enthalpy

Author:

Partanen Lauri J.,Partanen Jaakko I.

Abstract

AbstractThe three-parameter extended Hückel equations with parameters B, b1, and b2 have recently been successfully tested against existing vapor pressure, electrochemical, and solubility data for aqueous NaCl solutions at temperatures from (273 to 373) K (Partanen and Partanen in J. Chem. Eng. Data 65:5226–5239, 2020). In the present study, we extend this model to the apparent and partial molar enthalpy data of these solutions. The enthalpy equations were determined using a new calculation method that gives practically the same results as that used in another previous study (Partanen et al. in J. Chem. Eng. Data 62:2617–2632, 2017), but the new method is much simpler. In the previous enthalpy study, dilute NaCl solutions up to m = 0.2 mol⋅kg−1 were considered in the range from T = 273 to 353 K. Following the success of the three-parameter extended Hückel model within the whole concentration range at various temperatures, we tabulate new values for relative apparent and partial molar enthalpies for NaCl solutions at rounded molalities. The resulting values are extensively tested against the literature ones. The best agreement is obtained for temperatures below 288 K and between 313 and 353 K. Elsewhere, at least a reasonable agreement is obtained. As no enthalpy or heat capacity data were used in the estimation of our model’s parameters and as the model has excelled in explaining other high-precision thermodynamic data, we argue that the recommended enthalpy values should be preferred even for the temperatures where the agreement is only reasonable due to potential problems associated with the literature values. These problems are also considered in the study. Graphical Abstract

Funder

Aalto University

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Molecular Biology,Biochemistry,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3