Seasonal groundwater salinity dynamics in the mangrove supratidal zones based on shallow groundwater salinity and electrical resistivity imaging data

Author:

Prihantono Joko,Nakamura Takashi,Nadaoka Kazuo,Solihuddin Tubagus,Pryambodo Dino Gunawan,Ramdhan Muhammad,Adi Novi Susetyo,Ilham ,Wirasatriya Anindya,Widada Sugeng

Abstract

AbstractSoil salinity plays an essential role in the growth of mangroves. Mangroves usually grow in intertidal zones. However, in Karimunjawa National Park (KNP), Indonesia, mangroves are also found in supratidal zones. Thus, this study aims to determine why mangroves can grow in this supratidal zone, even during the dry season. We analyze seasonal changes in groundwater flow and salinity dynamics using the hydraulic head, shallow groundwater salinity, and electrical resistivity imaging (ERI) data. The result shows that variation in groundwater salinity is caused by seawater intrusion, which is generated by a hydraulic gradient due to the sea level being higher than the water table in KNP. Rainfall and evapotranspiration, which change seasonally, likely affect the water table fluctuation and salt concentration. ERI images indicate this seawater intrusion in the top sediment up to the bedrock boundary. However, the resistivity difference in the wet and dry seasons shows that remarkable resistivity change occurs at the deeper layer (50–60 m below ground level (BGL)), likely due to freshwater recharge from rainwater on the land side. Groundwater in the KNP is shallow and saline; thus, mangroves in this zone, e.g., Ceriops tagal and Lumnitzera racemosa, can grow because their roots can reach this groundwater. These mangrove species can still grow in this zone even though the shallow groundwater is very saline (46–50 ppt). However, this condition might cause these mangroves to grow stunted. Thus, freshwater availability is crucial for mangrove growth in this supratidal zone to dilute this high groundwater salinity.

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3