Piezoelectric properties of PZT by an ethylene glycol-based chemical solution synthesis

Author:

van der Veer Ewout,Noheda Beatriz,Acuautla MónicaORCID

Abstract

AbstractWe have investigated a water-stable sol–gel method based on ethylene glycol as a solvent and bridging ligand for the synthesis of ferroelectric lead zirconate titanate in bulk and thin film forms. This method offers lower toxicity of the solvent, higher stability toward atmospheric moisture and a simplified synthetic procedure compared to traditional sol–gel methods. However, the piezoelectric properties of products produced using this method have yet to be systematically studied. We have measured the ferroelectric and piezoelectric properties and compared them to existing literature using different synthesis techniques. Ceramic pellets of Nb-doped lead zirconate titanate (PNZT) in the tetragonal phase were produced with high density and good piezoelectric properties, comparable to those reported in the literature and those found in commercial piezoelectric elements. In addition, a nine-layer thin film stack was fabricated by spin coating onto platinized silicon substrates. The films were crack-free and showed a perovskite grain structure with a weak (111) orientation. Piezoelectric measurements of the film showed a piezoelectric coefficient comparable to literature values and good stability toward fatigue.

Funder

ubbo emmius fonds of the university of groningen

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Condensed Matter Physics,Biomaterials,General Chemistry,Ceramics and Composites,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3