A phase-field study on polymerization-induced phase separation occasioned by diffusion and capillary flow—a mechanism for the formation of porous microstructures in membranes

Author:

Wang FeiORCID,Ratke Lorenz,Zhang Haodong,Altschuh Patrick,Nestler Britta

Abstract

AbstractThe performance and the application of membranes, which are usually produced from polymer solutions, are strongly determined by their porous microstructures. One important mechanism for producing the porous microstructures of membranes is polymerization-induced phase separation (PIPS). Here, we scrutinize PIPS by employing a Cahn–Hilliard–Navier–Stokes method coupling with the Flory–Huggins model. We focus on the formation of membranes via diffusion as well as capillary flow. We report several morphological evolution characteristics of PIPS: (1) an asynchronous effect, where the polymer-rich phase and the polymer-lean phase reach their equilibrium concentrations at different times, (2) a center-to-center movement and collision-induced collision of polymer-rich particles, (3) transition of network structures into polymer particles and rebuilding of network structures from polymer particles, (4) polymer ring patterns. We expect that these findings would shed light on complex microstructures of membranes and provide guidance for the fabrication of desired membranes.

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Condensed Matter Physics,Biomaterials,General Chemistry,Ceramics and Composites,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3