Metal alkoxides as models for metal oxides—the concept revisited

Author:

Kessler Vadim G.ORCID

Abstract

AbstractSol-Gel synthesis of metal oxides constitutes a tremendously exciting domain of inorganic chemistry, where molecular and supramolecular science meet the physical chemistry and materials science. Structure and reactivity, especially surface complexation of biologically important molecules on the surface of metal oxide nanoparticles can efficiently be traced through structural studies of metal oxo-paperbags—the product of partial hydrolysis of alkoxide precursors. Paperbag is a recently proposed term to denote oligonuclear complexes not featuring intrinsic metal-metal bonding and thus not qualified to be called “clusters”. Another important insight, provided recently by the studies of heterometallic species, is dealing with visualization of bonding modes of single atom catalysts on metal oxide substrates and reveals possible coordination environments of heteroatoms on doping. The studies of large paperbag aggregates can contribute to understanding of factors influencing the bandgap and photocatalytic activity of related oxides. The use of these species directly as photo or electro catalysts is rather debatable, however, in the view of high reactivity of these alkoxide intermediates, easily transforming them into metal oxide nanoparticles on hydrolysis or thermolysis. Graphical Abstract

Funder

Vetenskapsrådet

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3