In situ synthesis and characterization of sulfonic acid functionalized hierarchical silica monoliths

Author:

Kohns Richard,Meyer Ralf,Wenzel Marianne,Matysik Jörg,Enke Dirk,Tallarek UlrichORCID

Abstract

AbstractSurface functionalization of porous materials with sulfonic acid (SO3H) groups is of particular interest in applications involving ion exchange, acidic catalysis and proton conduction. Macro-mesoporous silica monoliths are ideal support structures for these applications, as they combine advection-dominated mass transport in the macropores with short diffusion lengths and a large surface area (available for functionalization) in their mesoporous skeleton. Here, we report on SO3H functionalized sol–gel silica monoliths with bimodal pore systems exhibiting macro- and mesoporosity, prepared according to a simple, efficient in situ synthesis protocol. Based on the co-condensation approach, thiol groups were introduced homogeneously into the pore structure, followed by their oxidation to SO3H groups and the simultaneous removal of the template. The macropore size, specific surface area, and coverage with SO3H groups are easily adjusted in this synthesis route. Importantly, the hybrid monoliths have a substantially narrower mesopore size distribution (relative standard deviation ~25%) than conventional sol–gel materials (>40%) and can be engineered crack-free in a robust column design (suitable for high-pressure flow-through operation) with mean mesopore size down to ~7 nm. They are characterized by IR spectroscopy, thermogravimetry, and elemental analysis as well as 13C and 29Si solid state NMR to corroborate the simple, efficient combination of sol–gel-based material synthesis, surface functionalization, and template removal (i.e., polymer extraction). Complementary, inverse gas chromatography is presented as a new approach to characterize the incorporated SO3H groups via surface energy analysis and particularly resolve changes in the Lewis acid–base characteristics engendered by that functionalization.

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Condensed Matter Physics,Biomaterials,General Chemistry,Ceramics and Composites,Electronic, Optical and Magnetic Materials

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3