Abstract
AbstractAs a result of the global demand for sustainable products, a suitable alternative to the resorcinol-formaldehyde aerogels, which are frequently used as precursors for carbon aerogels, is searched for. In this study, the replacement of petroleum-derived formaldehyde with a natural, biobased crosslinker, namely 5-(hydroxymethyl)furfural (5-HMF) is shown, and the synthesis of renewable, monolithic tannin aerogels is demonstrated. Compared to well-known tannin-formaldehyde aerogels, this green alternative shows lower reactivity of the crosslinker associated with lower gelation times as well as lower specific surface areas at the organic stage. Nonetheless, the morphologies and synthesis-structure relationships follow similar trends for both tannin-based aerogels, e.g., the pore size is influenced by the initial pH in the same manner. The turnover to carbon aerogels by a carbothermal treatment results in enhanced high-specific surface areas of the tannin-5-HMF-based carbon aerogels, which are similar and even slightly outperform those obtained from tannin-formaldehyde aerogels. This suggests that they are a convenient alternative for carbon aerogel applications.
Graphical Abstract
Publisher
Springer Science and Business Media LLC
Subject
Materials Chemistry,Condensed Matter Physics,Biomaterials,General Chemistry,Ceramics and Composites,Electronic, Optical and Magnetic Materials
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献