Preparation and properties of PDMS elastomer cross-linked with hydrolyzate of tetraethoxysilane, hexaethoxydisiloxane, and octaethoxytrisiloxane: influence of cross-linker structure

Author:

Sato YoheiORCID,Hayami RyoheiORCID,Yamamoto KazukiORCID,Gunji TakahiroORCID

Abstract

AbstractEthoxysilanes were hydrolyzed, and the resulting hydrolyzates were dimethylsilylated to produce Si–H terminated oligosiloxanes (CLs). These CLs were characterized using gel permeation chromatography, nuclear magnetic resonance, and Fourier-transform infrared spectroscopy. The results indicated the formation of highly condensed cyclic siloxanes, four-membered cyclic siloxanes, and linearly condensed cyclic siloxanes when derived from tetraethoxysilane, hexaethoxydisiloxane, and octaethoxytrisiloxane, respectively. The CLs were subsequently reacted with vinyl-terminated polydimethylsiloxane in the presence of the Karstedt catalyst to yield PDMS elastomers, which are comprised of di- and quadra-functional silicones. Tests for transmittance, thermal properties, tensile strength, and swelling in toluene were conducted to assess the impact of the molecular weight and microstructure of the CLs on the final products. As the number of silicon atoms in the ethoxysilanes increased, there was a rise in the secant modulus and a reduction in the degree of swelling. These findings suggest that the structure of PDMS elastomers can be tailored by varying the structure of the ethoxysilanes used as a cross-linking agent. Graphical Abstract

Funder

JSPS KAKENHI

JST

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Condensed Matter Physics,Biomaterials,General Chemistry,Ceramics and Composites,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3