Ripeness Classification of Bananas Using an Artificial Neural Network
Author:
Publisher
Springer Science and Business Media LLC
Subject
Multidisciplinary
Link
http://link.springer.com/content/pdf/10.1007/s13369-018-03695-5.pdf
Reference26 articles.
1. Mendoza, F.; Dejmek, P.; Aguilera, J.M.: Predicting ripening stages of bananas (Musa cavendish) by computer vision. Acta Hortic. 682(183), 1363–1370 (2005)
2. Mendoza, F.; Aguilera, J.M.: Application of image analysis for classification of ripening bananas. J. Food Sci. 69(9), 471–477 (2004)
3. Prabha, D.S.; Kumar, J.S.: Assessment of banana fruit maturity by image processing technique. J. Food Sci. Technol. 52(3), 1316–1327 (2015). https://doi.org/10.1007/s13197-013-1188-3
4. AlZubi, S.; Islam, N.; Abbod, M.: Multiresolution analysis using wavelet, ridgelet, and curvelet transforms for medical image segmentation. J. Biomed. Imaging (2011). https://doi.org/10.1155/2011/136034
5. Schelkens, P.; Munteanu, A.; Barbarien, J.; Galca, M.; Giro-Nieto, X.; Cornelis, J.: Wavelet coding of volumetric medical data sets. IEEE Trans. Med. Imaging 22(3), 441–458 (2003)
Cited by 105 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Real-Time Banana Ripeness Detection and Classification using YOLOv8;2024 9th International Conference on Mechatronics Engineering (ICOM);2024-08-13
2. GSE-YOLO: A Lightweight and High-Precision Model for Identifying the Ripeness of Pitaya (Dragon Fruit) Based on the YOLOv8n Improvement;Horticulturae;2024-08-12
3. Digital assessment of post-harvest Nendran banana for faster grading: CNN-based ripeness classification model;Postharvest Biology and Technology;2024-08
4. Aplicação de Redes Neurais Convolucionais para Classificação de Imagens de Estágios de Maturação da Banana Prata Catarina;Anais do XV Workshop de Computação Aplicada à Gestão do Meio Ambiente e Recursos Naturais (WCAMA 2024);2024-07-21
5. Fresh Fruit Bunch Ripeness Classification Methods: A Review;Food and Bioprocess Technology;2024-06-28
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3