Investigation of Gamma-Induced Changes to Screening Currents and AC Losses in Mono- Versus Multi-filamentary REBCO Coated Conductors Using DC and AC Magnetometry

Author:

Campbell Holly JaneORCID,Sasaki Hirokazu,Zhang Yifei

Abstract

AbstractREBCO (rare-earth barium copper oxide) coated conductor tapes are a highly attractive option for magnet materials in future tokamak fusion power plants. However, the threat of intense neutron and gamma radiation, together with AC losses during magnet coil ramping, has raised concerns around magnet coil lifetimes. Irradiation-induced changes to flux creep rate has been identified as a key performance-limiting factor in REBCO tapes at low temperatures and high fields post-irradiation with gamma rays; spontaneous flux creep contributes to hysteretic AC loss in REBCO cables under applied AC fields. Knowing that multi-filamentary tapes are under consideration for tokamaks as an AC loss mitigation, magnetic measurements and gamma irradiation experiments are presented here on striated and mono-filamentary YBCO tapes to investigate the differences in post-irradiation screening currents and AC losses. Reduction in AC losses improved magnetisation critical current density (Jc) retention after 1 MGy in the multi- relative to the mono-filamentary samples. After the 5 MGy dose, striations then made the multi-filamentary tape more susceptible to Jc degradation because of the thinner individual filament width. Scanning transmission electron microscopy analysis on an analogous GdYBCO mono-filamentary tape did not indicate the introduction of nm-scale amorphisation to the active GdYBCO layer after gamma irradiation. A potential theoretical explanation for the underlying mechanism altering the flux-pinning landscape across the REBCO layer surface in gamma-irradiated tapes is discussed. This work concluded that gamma effects on screening current capability should be considered in future tokamak REBCO tape qualification studies.

Funder

EPSRC

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3