Abstract
AbstractA review of the phenomenology and microscopy of cuprate superconductors is presented, with particular attention to universal conductance features, which reveal the existence of two electronic subsystems. The overall electronic system consists of $$1+p$$
1
+
p
charges, where p is the doping. At low dopings, exactly one hole is localized per planar copper–oxygen unit, while upon increasing doping and temperature, the hole is gradually delocalized and becomes itinerant. Remarkably, the itinerant holes exhibit identical Fermi liquid character across the cuprate phase diagram. This universality enables a simple count of carrier density and yields comprehensive understanding of the key features in the normal and superconducting state. A possible superconducting mechanism is presented, compatible with the key experimental facts. The base of this mechanism is the interaction of fast Fermi liquid carriers with localized holes. A change in the microscopic nature of chemical bonding in the copper oxide planes, from ionic to covalent, is invoked to explain the phase diagram of these fascinating compounds.
Funder
European Research Council
CeNIKS
Hrvatska Zaklada za Znanost
TU Wien
Publisher
Springer Science and Business Media LLC
Subject
Condensed Matter Physics,Electronic, Optical and Magnetic Materials
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献