Publisher
Springer Science and Business Media LLC
Subject
Biomedical Engineering,General Medicine
Reference14 articles.
1. Varela-Santos, S., & Melin, P. (2020). A new approach for classifying coronavirus COVID-19 based on its manifestation on chest X-rays using texture features, neural networks. Information Sciences, Division of Graduate Studies, Tijuana Institute of Technology, Tijuana, 22414 Baja CA, Mexico https://doi.org/10.1016/j.ins.2020.09.041
2. Hemdan, E., Shouman, M., & Karar, M. (2020). Covidx-Net: A framework of deep learning classifiers to diagnose COVID19 in X-ray images. Journal Computer Science Engineering, Computer Science, Engineering, ArXiv
3. Wang, S., Zha, Y., Li, W., Wu, Q., Li, X., Niu, M., Wang, M., Qiu, X., Li, H., Yu, H., Gong, W., Li, L., Yongbei, Z., Wang, L., & Tian, J. (2020). A fully automatic deep learning system for COVID-19 diagnostic and prognostic analysis. European Respiratory Journal. https://doi.org/10.1183/13993003.00775-2020
4. Oh, Y., Park, S., & Ye, J. C. (2020). IEEE fellow, Deep learning COVID-19 features on CXR using limited training data sets. IEEE Transactions on Medical Imaging. https://doi.org/10.1109/TMI.2020.2993291
5. Perumal, V., Narayanan, V., & Rajasekar, S. J. S. (2020). Detection of COVID-19 using CXR and CT images using transfer learning and Haralick features. Applied Intelligence. https://doi.org/10.1007/s10489-020-01831-z
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献