A Practical Computer Aided Diagnosis System for Breast Ultrasound Classifying Lesions into the ACR BI-RADS Assessment

Author:

Su Hsin-Ya,Lien Chung-YuehORCID,Huang Pai-Jung,Chu Woei-ChynORCID

Abstract

Abstract Purpose In this paper, we propose an open-source deep learning-based computer-aided diagnosis system for breast ultrasound images based on the Breast Imaging Reporting and Data System (BI-RADS). Methods Our dataset with 8,026 region-of-interest images preprocessed with ten times data augmentation. We compared the classification performance of VGG-16, ResNet-50, and DenseNet-121 and two ensemble methods integrated the single models. Results The ensemble model achieved the best performance, with 81.8% accuracy. Our results show that our model is performant enough to classify Category 2 and Category 4/5 lesions, and data augmentation can improve the classification performance of Category 3. Conclusion Our main contribution is to classify breast ultrasound lesions into BI-RADS assessment classes that place more emphasis on adhering to the BI-RADS medical suggestions including recommending routine follow-up tracing (Category 2), short-term follow-up tracing (Category 3) and biopsies (Category 4/5).

Funder

National Yang Ming Chiao Tung University

Publisher

Springer Science and Business Media LLC

Reference34 articles.

1. Ferlay, J., Colombet, M., Soerjomataram, I., Parkin, D. M., Piñeros, M., Znaor, A., & Bray, F. (2021). Cancer statistics for the year 2020: An overview. International Journal of Cancer, 149(4), 778–789. https://doi.org/10.1002/ijc.33588.

2. American Cancer Society (2023, March 9). Cancer Statistics Center. Retrieved March 9, 2024, from http://cancerstatisticscenter.cancer.org.

3. Ginsburg, O., et al. (2020). Breast cancer early detection: A phased approach to implementation. Cancer, 126(S10), 2379–2393. https://doi.org/10.1002/cncr.32887.

4. American College of Radiology (2013, March 9). ACR BI-RADS Atlas: breast imaging reporting and data system, 5th ed., Reston, VA: American College of Radiology. Retrieved March 9, 2024, from https://www.acr.org/Clinical-Resources/Reporting-and-Data-Systems/Bi-Rads.

5. Lu, L., Zheng, Y., Carneiro, G., & Yang, L. (2017). Deep learning and convolutional neural networks for medical image computing. Springer.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3