Author:
Zhao Yu,Chen Dong,Xie Hongzhi,Zhang Shuyang,Gu Lixu
Funder
National Natural Science Foundation of China
the National Key Basic Research Program
Publisher
Springer Science and Business Media LLC
Subject
Biomedical Engineering,General Medicine
Reference51 articles.
1. Oliver, A., Freixenet, J., Marti, J., Perez, E., Pont, J., Denton, E. R., et al. (2010). A review of automatic mass detection and segmentation in mammographic images. Medical Image Analysis,
14, 87–110.
https://doi.org/10.1016/j.media.2009.12.005
.
2. World Health Organization. (2012). International Agency for Research on Cancer GLOBOCAN 2012: Estimated cancer incidence, mortality and prevalence worldwide in 2012. Geneva: WHO.
3. Sickles, E. A. (1989). Breast masses: Mammographic evaluation. Radiology,
173, 297–303.
https://doi.org/10.1148/radiology.173.2.2678242
.
4. Kooi, T., Litjens, G., van Ginneken, B., Gubern-Mérida, A., Sánchez, C. I., Mann, R., et al. (2017). Large scale deep learning for computer aided detection of mammographic lesions. Medical Image Analysis,
35, 303–312.
https://doi.org/10.1016/j.media.2016.07.007
.
5. de Lima, S. M., da Silva-Filho, A. G., & dos Santos, W. P. (2016). Detection and classification of masses in mammographic images in a multi-kernel approach. Computer Methods and Programs in Biomedicine,
134, 11–29.
https://doi.org/10.1016/j.cmpb.2016.04.029
.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献