Design of ECM Functionalized Polycaprolactone Aligned Nanofibers for Peripheral Nerve Tissue Engineering

Author:

Nune ManasaORCID,Bhat Mahima,Nagarajan Aishwarya

Abstract

Abstract Purpose Peripheral nerve injury (PNI) and its regeneration continue to remain a significant medical burden worldwide. The current treatment strategies used to treat PNI are often associated with multiple complications and yet do not achieve complete motor and sensory functions. Recently, synthetic biodegradable nerve conduits have become one the most commonly used conduits to repair small gaps in nerve injury. But they have not shown better results than nerve grafts possibly because of the lack of biological microenvironment required for axonal growth. Schwann cells play a very crucial role in peripheral nerve regeneration where activated SCs produce multiple neurotrophic factors that help in remyelination and immune modulation during nerve repair. Studies have shown that nanofibrous scaffolds have better bioactivity and more closely mimic the native structure of the extracellular matrix. Therefore, the present study was focused on designing a nanofibrous scaffold that would cover the roles of both structural support for the cells that can provide a microenvironment with biological cues for nerve growth and regeneration. Methods Decellularized Schwann cell ECM were spin-coated on polycaprolactone random and aligned nanofibrous scaffolds and their compatibility was evaluated using Schwann cells. Results Schwann cells displayed growth in the direction of the aligned PCL nanofibers and ACM treated exhibited appropriate bipolar morphology indicating that these modified fibers could provide directional cues making them highly suitable for neuronal cell growth. Conclusion Our results indicate that the fabricated aligned SC-ACM treated PCL scaffolds would be a potential biomaterial to treat peripheral nerve injuries and promote regeneration. Graphical Abstract

Funder

Manipal University

Science and Engineering Research Board

Manipal Academy of Higher Education, Manipal

Publisher

Springer Science and Business Media LLC

Subject

Biomedical Engineering,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3