Robust Quantification of Regional Patterns of Migration in Three-Dimensional Cell Culture Models

Author:

Vong Chun Kiet,Wang Alan,Dragunow Mike,Park Thomas I.-H.,Shim VickieORCID

Abstract

Abstract Purpose Wound healing assays is a common two-dimensional migration model, with the spheroid assay three-dimensional migration model recently emerging as being more representative of in vivo migration behaviours. These models provide insight into the overall migration of cells in response to various factors such as biological, chemotactic and molecular agents. However, currently available analysis techniques for these assays fall short on providing quantifiable means to measure regional migration patterns, which is essential to allow a more robust assessment of drug treatments on cell migration in a chemotactic fashion. Therefore, this study aims to develop a finite element (FE) based pipeline that can objectively quantify regional migration patterns of cells. Methods We have developed a novel FE based approach that is able to accurately measure changes in overall migration areas of 3D Glioblastoma Multiforme (GBM) spheroids that we generated using the primary cell lines from patients undergoing tumour resection surgery. We live-imaged the migration patterns of GBM spheroids and analysed them, first with the standard ImageJ method. We then performed the same analysis with the proposed FE method. Results When compared to the standard ImageJ method, our proposed method was able to measure the changes in a more quantitative and accurate manner. Furthermore, our regional migration analysis provided means to analyse the migration pattern seen in the phantom data and our experimental results. Conclusion Our FE based method will be a a robust tool for analysing cell migration patterns of GBM and other migrating cells in various diseases and degenerations.

Funder

Ministry of Business, Innovation and Employment

Neurological Foundation of New Zealand

University of Auckland

Publisher

Springer Science and Business Media LLC

Subject

Biomedical Engineering,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3