Assessment of Human Skin Burns: A Deep Transfer Learning Approach

Author:

Abubakar AliyuORCID,Ugail Hassan,Bukar Ali Maina

Abstract

Abstract Purpose Accurate assessment of burns is increasingly sought due to diagnostic challenges faced with traditional visual assessment methods. While visual assessment is the most established means of evaluating burns globally, specialised dermatologists are not readily available in most locations and assessment is highly subjective. The use of other technical devices such as Laser Doppler Imaging is highly expensive while rate of occurrences is high in low- and middle-income countries. These necessitate the need for robust and cost-effective assessment techniques thereby acting as an affordable alternative to human expertise. Method In this paper, we present a technique to discriminate skin burns using deep transfer learning. This is due to deficient datasets to train a model from scratch, in which two dense and a classification layers were added to replace the existing top layers of pre-trained ResNet50 model. Results The proposed study was able to discriminate between burns and healthy skin in both ethnic subjects (Caucasians and Africans). We present an extensive analysis of the effect of using both homogeneous and heterogeneous datasets when training a machine learning algorithm. The findings show that using homogenous dataset during training process produces a biased diagnostic model towards minor racial subjects while using heterogeneous datasets produce a robust diagnostic model. Recognition accuracy of up to 97.1% and 99.3% using African and Caucasian datasets respectively were achieved. Conclusion We concluded that it is feasible to have a robust diagnostic machine learning model for burns assessment that can be deployed to remote locations faced with access to specialized burns specialists, thereby aiding in decision-making as quick as possible

Funder

Petroleum Technology Development Fund

Publisher

Springer Science and Business Media LLC

Subject

Biomedical Engineering,General Medicine

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3