Author:
Singh Anup Kumar,Ye Dongxi
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,General Mathematics
Reference23 articles.
1. A. Alaca, S. Alaca, and M. F. Lemire, Jacobi’s identity and representation of integers by certain quaternary quadratic forms, Int. J. Modern Math., 2 (2007), 143–176.
2. A. Alaca, S. Alaca, and K. S. Williams, On the quaternary forms x2 + y2 + z2 + 5t2, x2+ y2 + 5z2 + 5t2 and x2 + 5y2 + 5z2 + 5t2, JP J. Algebra Number Theory Appl., 9 (2007), 37–53.
3. A. Berkovich and H. Yesilyurt, Ramanujan’s identities and representation of integers by certain binary and quaternary quadratic forms, Ramanujan J., 20 (2009), 375–408.
4. A. J. F. Biagioli, The construction of modular forms as products of transforms of the Dedekind eta function, Acta Arith., 54 (1990), 272–300.
5. S. Cooper, On sums of an even number of squares, and an even number of triangular numbers: An elementary approach based on Ramanujan’s 1ψ1 summation formula, q-series with applications to combinatorics, number theory, and physics (Urbana, IL, 2000), 115–137, Contemp. Math., 291, Amer. Math. Soc., Providence, RI 2001.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献