Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,General Mathematics
Reference30 articles.
1. S. Antontsev, Wave equation with $$p(x,t)$$-laplacian and damping term: existence and blow-up, Differ. Equ. Appl. 3(4) (2011), 503–525. https://doi.org/10.7153/dea-03-32
2. S. Antontsev, J. Ferreira, A nonlinear viscoelastic plate equation with $$\overrightarrow{p}(x,t)$$-Laplace operator: Blow up of solutions with negative initial energy, Nonlinear Anal. Real World Appl. 59 (2021), 103240. https://doi.org/10.1016/j.nonrwa.2020.103240
3. S. Antontsev, J. Ferreira, On a viscoelastic plate equation with strong damping and $$\overrightarrow{p}(x,t)$$-Laplacian. Existence and uniqueness, Diff. Int. Equ. 27(11/12) (2014), 1147–1170.
4. S. Antontsev, J. Ferreira, E. PişKin, Existence and blow up of solutions for a strongly damped petrovsky equation with variable-exponent nonlinearities, Electron. J. Differ. Equ. 2021(06) (2021), 1–18.
5. S. Antontsev, J. Ferreira, E. PişKin, H. Yüksekkaya, Mohammad Shahrouzi, Blow up and asymptotic behavior of solutions for a $$p(x)$$-laplacian equation with delay term and variable exponents, Electron. J. Differ. Equ. 2021(84) (2021), 1–20.