Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,General Mathematics
Reference63 articles.
1. M. Acu, On some analytic functions with negative coefficients, Gen. Math., 15(2-3) (2007), 190–200.
2. O. P. Ahuja, Planar harmonic univalent and related mappings, J. Inequal. Pure Appl. Math., 6(4) (2005), Art. 122, 1–18.
3. R. M. Ali, M. H. Khan, V. Ravichandran and K. G. Subramanian, A class of multivalent functions with negative coefficients defined by convolution, Bull. Korean Math. Soc., 43(1) (2006), 179–188.
4. O. Altintas and S. Owa, Neighborhoods of certain analytic functions with negative coefficients, Int. J. Math. Math. Sei, 19(4) (1996), 797–800.
5. O. Altintas, O. Ozkan and H. M. Srivastava, Neighborhoods of a class of analytic functions with negative coefficients, Appl. Math. Lett., 13(3) (2000), 63–67.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Multivalent harmonic functions Involving multiplier transformation;Communications Faculty Of Science University of Ankara Series A1Mathematics and Statistics;2022-09-30