1. G. Almkvist, C. van Enckevort, D. van Straten and W. Zudilin, Tables of Calabi-Yau equations, arXiv:math/0507430v2.
2. G. Almkvist and W. Zudilin, Differential equations, mirror maps and zeta values, Mirror Symmetry V, (N. Yui, S.-T. Yau, and J. D. Lewis, eds.), Proceedings of BIRS workshop on Calabi-Yau Varieties and Mirror Symmetry (December 6-C11, 2003), AMS/IP Stud. Adv. Math. 38, Amer. Math. Soc. International Press, Providence, RI (2007), 481–515; math.NT/0402386 (2004).
3. L. Calitz, A theorem of Glaisher, Canadian J. Math. 5 (1953), 306–316.
4. H.-Q. Cao and H. Pan, Note on some congruences of Lehmer, J. Number Theory 129 (2009), no.8, 1813–1819.
5. M. E. Hoffman, Quasi-symmetric functions and mod$$p$$multiple hamonic sums, Kyushu. J. Math. 69 (2015), 345–366.