Author:
Rihane Salah E.,Tchammou Euloge B.,Togbé Alain
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,General Mathematics
Reference10 articles.
1. X. Ai, J. Chen, S. Zhang and H. Hu, Complete solutions of the simultaneous Pell equations $$x^2-24y^2=1$$ and $$y^2-pz^2=1$$, J. Number Theory 147 (2015), 103–108.
2. A. Baker and H. Davenport, The equations $$3x^2-2= y^2$$ and $$8x^2 -7 =z^2$$, Quart. J. Math. Oxford Ser. (2) 20 (1969), 129–137.
3. M. Cipu, Pairs of Pell equations having at most one common solution in positive integers, An. Ştiinţ. Univ. “Ovidius” Constanţa 15 (2007), 55–66.
4. R. Keskin, O. Karaatlı, Z. Siar and Ü. Öğüt, On the determination of solutions of the simultaneous Pell equations $$x^2-(a^2-1)y^2=1$$ and $$y^2-pz^2=1$$, Period. Math. Hung. 75 (2017), 336–344.
5. Y. Y. Qu, On simultaneous Pell equations $$x^2-(a^2-1)y^2=1$$ and $$y^2-pz^2=1$$, J. Number Theory 184 (2018), 128–132.