Author:
Denisov Denis,Wachtel Vitali
Abstract
AbstractWe consider an asymptotically stable multidimensional random walk $$S(n)=(S_1(n),\ldots , S_d(n) )$$
S
(
n
)
=
(
S
1
(
n
)
,
…
,
S
d
(
n
)
)
. For every vector $$x=(x_1\ldots ,x_d)$$
x
=
(
x
1
…
,
x
d
)
with $$x_1\ge 0$$
x
1
≥
0
, let $$\tau _x:=\min \{n>0: x_{1}+S_1(n)\le 0\}$$
τ
x
:
=
min
{
n
>
0
:
x
1
+
S
1
(
n
)
≤
0
}
be the first time the random walk $$x+S(n)$$
x
+
S
(
n
)
leaves the upper half space. We obtain the asymptotics of $$p_n(x,y):= {\textbf{P}}(x+S(n) \in y+\Delta , \tau _x>n)$$
p
n
(
x
,
y
)
:
=
P
(
x
+
S
(
n
)
∈
y
+
Δ
,
τ
x
>
n
)
as n tends to infinity, where $$\Delta $$
Δ
is a fixed cube. From that, we obtain the local asymptotics for the Green function $$G(x,y):=\sum _n p_n(x,y)$$
G
(
x
,
y
)
:
=
∑
n
p
n
(
x
,
y
)
, as $$|y |$$
|
y
|
and/or $$|x |$$
|
x
|
tend to infinity.
Funder
Leverhulme Trust
Deutsche Forschungsgemeinschaft
Publisher
Springer Science and Business Media LLC
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability