Abstract
AbstractIn this paper, we show a functional central limit theorem for the sum of the first $$\lfloor t n \rfloor $$
⌊
t
n
⌋
diagonal elements of f(Z) as a function in t, for Z a random real symmetric or complex Hermitian $$n\times n$$
n
×
n
matrix. The result holds for orthogonal or unitarily invariant distributions of Z, in the cases when the linear eigenvalue statistic $${\text {tr}}f(Z)$$
tr
f
(
Z
)
satisfies a central limit theorem (CLT). The limit process interpolates between the fluctuations of individual matrix elements as $$f(Z)_{1,1}$$
f
(
Z
)
1
,
1
and of the linear eigenvalue statistic. It can also be seen as a functional CLT for processes of randomly weighted measures.
Publisher
Springer Science and Business Media LLC
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability
Reference46 articles.
1. Anderson, G., Guionnet, A., Zeitouni, O.: An Introduction to Random Matrices, Volume 118 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge New York (2010)
2. Albeverio, S., Pastur, L., Shcherbina, M.: On the $$1/n$$ expansion for some unitary invariant ensembles of random matrices. Commun. Math. Phys. 224(1), 271–305 (2001)
3. Ben Arous, G., Dembo, A., Guionnet, A.: Aging of spherical spin glasses. Probab. Theory Rel. Fields 120(1), 1–67 (2001)
4. Ben Arous, G., Guionnet, A.: Large deviations for Wigner’s law and Voiculescu’s non-commutative entropy. Probab. Theory Rel. Fields 108(4), 517–542 (1997)
5. Breuer, J., Duits, M.: Central limit theorems for biorthogonal ensembles and asymptotics of recurrence coefficients. J. Am. Math. Soc. 30(1), 27–66 (2017)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献