Author:
Jiang Lianzi,Liang Gechun
Abstract
AbstractThis article fills a gap in the literature by relaxing the integrability condition for the robust $$\alpha $$
α
-stable central limit theorem under sublinear expectation. Specifically, for $$\alpha \in (0,1]$$
α
∈
(
0
,
1
]
, we prove that the normalized sums of i.i.d. non-integrable random variables $$\big \{n^{-\frac{1}{\alpha }}\sum _{i=1}^{n}Z_{i}\big \}_{n=1}^{\infty }$$
{
n
-
1
α
∑
i
=
1
n
Z
i
}
n
=
1
∞
converge in law to $${\tilde{\zeta }}_{1}$$
ζ
~
1
, where $$({\tilde{\zeta }}_{t})_{t\in [0,1]}$$
(
ζ
~
t
)
t
∈
[
0
,
1
]
is a multidimensional nonlinear symmetric $$\alpha $$
α
-stable process with jump uncertainty set $${\mathcal {L}}$$
L
. The limiting $$\alpha $$
α
-stable process is further characterized by a fully nonlinear partial integro-differential equation (PIDE):
$$\begin{aligned} \left\{ \begin{array}{l} \displaystyle \partial _{t}u(t,x)-\sup \limits _{F_{\mu }\in {\mathcal {L}}}\left\{ \int _{{\mathbb {R}}^{d}}\delta _{\lambda }^{\alpha }u(t,x)F_{\mu }(d\lambda )\right\} =0,\\ \displaystyle u(0,x)=\phi (x),\quad \forall (t,x)\in [0,1]\times {\mathbb {R}}^{d}, \end{array} \right. \end{aligned}$$
∂
t
u
(
t
,
x
)
-
sup
F
μ
∈
L
∫
R
d
δ
λ
α
u
(
t
,
x
)
F
μ
(
d
λ
)
=
0
,
u
(
0
,
x
)
=
ϕ
(
x
)
,
∀
(
t
,
x
)
∈
[
0
,
1
]
×
R
d
,
where $$\begin{aligned} \delta _{\lambda }^{\alpha }u(t,x):=\left\{ \begin{array}{ll} u(t,x+\lambda )-u(t,x)-\langle D_{x}u(t,x),\lambda \mathbbm {1}_{\{|\lambda |\le 1\}}\rangle , &{}\quad \alpha =1,\\ u(t,x+\lambda )-u(t,x), &{}\quad \alpha \in (0,1). \end{array} \right. \end{aligned}$$
δ
λ
α
u
(
t
,
x
)
:
=
u
(
t
,
x
+
λ
)
-
u
(
t
,
x
)
-
⟨
D
x
u
(
t
,
x
)
,
λ
1
{
|
λ
|
≤
1
}
⟩
,
α
=
1
,
u
(
t
,
x
+
λ
)
-
u
(
t
,
x
)
,
α
∈
(
0
,
1
)
.
The approach used in this study involves the utilization of several tools, including a weak convergence approach to obtain the limiting process, a Lévy–Khintchine representation of the nonlinear $$\alpha $$
α
-stable process and a truncation technique to estimate the corresponding $$\alpha $$
α
-stable Lévy measures. In addition, the article presents a probabilistic method for proving the existence of a solution to the above fully nonlinear PIDE.
Funder
National Natural Science Foundation of Shandong Province
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability