Author:
Iksanov Alexander,Wachtel Vitali
Abstract
AbstractLet $$\eta _1$$
η
1
, $$\eta _2,\ldots $$
η
2
,
…
be independent copies of a random variable $$\eta $$
η
with zero mean and finite variance which is bounded from the right, that is, $$\eta \le b$$
η
≤
b
almost surely for some $$b>0$$
b
>
0
. Considering different types of the asymptotic behaviour of the probability $$\mathbb {P}\{\eta \in [b-x,b]\}$$
P
{
η
∈
[
b
-
x
,
b
]
}
as $$x\rightarrow 0+$$
x
→
0
+
, we derive precise tail asymptotics of the random Dirichlet series $$\sum _{k\ge 1}k^{-\alpha }\eta _k$$
∑
k
≥
1
k
-
α
η
k
for $$\alpha \in (1/2, 1]$$
α
∈
(
1
/
2
,
1
]
.
Publisher
Springer Science and Business Media LLC
Reference14 articles.
1. Apostol, T.M.: Introduction to Analytic Number Theory. Springer, New York (1976)
2. Bingham, N.H., Goldie, C.M., Teugels, J.L.: Regular Variation. Cambridge University Press, Cambridge (1989)
3. Durrett, R.: Probability: Theory and Examples, 4th edn. Cambridge University Press, Cambridge (2010)
4. Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics. Sixth Printing, with Corrections. Addison-Wesley, Reading (1990)
5. Klüppelberg, C.: Subexponential distributions and characterizations of related classes. Probab. Th. Rel. Fields. 82, 259–269 (1989)