Author:
Bressaud Xavier,Cohen Serge
Abstract
AbstractThe 6-vertex model holds significance in various mathematical and physical domains. The configurations of the 6-vertex model correspond to the paths in multigraphs. This article focuses on calculating the transition probability for the simple random walk on these multigraphs. An intriguing aspect of the findings is the utilization of continued fractions in the computation of the transition probability.
Funder
Université Toulouse III - Paul Sabatier
Publisher
Springer Science and Business Media LLC
Reference8 articles.
1. Baxter, R.J.: Exactly Solved Models in Statistical Mechanics. Academic Press [Harcourt Brace Jovanovich, Publishers], London (1982)
2. Boissard, E., Cohen, S., Espinasse, Th., Norris, J.: Diffusivity of a random walk on random walks. Random Struct. Algorithms 47(2), 267–283 (2015)
3. Brémont, J.: Planar random walk in a stratified quasi-periodic environment. Markov Process. Relat. Fields 27(5), 755–788 (2021)
4. Duminil-Copin, H., Harel, M., Laslier, B., Raoufi, A., Ray, G.: Logarithmic variance for the height function of square-ice. Commun. Math. Phys. 396(2), 867–902 (2022)
5. Espinasse, T., Guillotin-Plantard, N., Nadeau, P.: A combinatorial approach to a model of constrained random walkers. Comb. Probab. Comput. 25(2), 222–235 (2016)