Abstract
AbstractWe introduce the notion of a conditional distribution to a zero-probability event in a given direction of approximation and prove that the conditional distribution of a family of independent Brownian particles to the event that their paths coalesce after the meeting coincides with the law of a modified massive Arratia flow, defined in Konarovskyi (Ann Probab 45(5):3293–3335, 2017. https://doi.org/10.1214/16-AOP1137).
Publisher
Springer Science and Business Media LLC
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability
Reference56 articles.
1. Arratia, R.A.: Coalescing Brownian motion on the line. ProQuest LLC, Ann Arbor, MI (1979). Thesis (Ph.D.)–The University of Wisconsin - Madison
2. Arratia, R.A.: Coalescing brownian motion and the voter model on $$\mathbb{Z}$$. Unpublished partial manuscript (1981)
3. Berestycki, N., Garban, C., Sen, A.: Coalescing Brownian flows: a new approach. Ann. Probab. 43(6), 3177–3215 (2015). https://doi.org/10.1214/14-AOP957
4. Bertini, L., De Sole, A., Gabrielli, D., Jona-Lasinio, G., Landim, C.: Macroscopic fluctuation theory. Rev. Mod. Phys. 87, 593–636 (2015). https://doi.org/10.1103/RevModPhys.87.593
5. Blount, D., Kouritzin, M.A.: On convergence determining and separating classes of functions. Stoch. Process. Appl. 120(10), 1898–1907 (2010). https://doi.org/10.1016/j.spa.2010.05.018
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献