Author:
Berkes István,Hörmann Siegfried
Abstract
AbstractLet $$X_{1},X_{2},\ldots $$
X
1
,
X
2
,
…
be independent random variables with $${E}X_{k}=0$$
E
X
k
=
0
and $$\sigma _{k}^{\,2}:={E}X_{k}^2<\infty $$
σ
k
2
:
=
E
X
k
2
<
∞
$$(k\ge 1)$$
(
k
≥
1
)
. Set $$S_k=X_1+\cdots +X_k$$
S
k
=
X
1
+
⋯
+
X
k
and assume that $$s_{k}^{\,2}:={E}S_k^2\rightarrow \infty $$
s
k
2
:
=
E
S
k
2
→
∞
. We prove that under the Kolmogorov condition $$\begin{aligned} |X_n|\le L_n, \quad L_n =o(s_n/(\log \log s_n)^{1/2}) \end{aligned}$$
|
X
n
|
≤
L
n
,
L
n
=
o
(
s
n
/
(
log
log
s
n
)
1
/
2
)
we have $$\begin{aligned} \frac{1}{\log s_{n}^{\,2}}\sum _{k=1}^{n}\frac{\sigma _{k+1}^{\,2}}{s_{k}^{\,2}}f\left( \frac{S_{k}}{s_{k}}\right) \rightarrow \frac{1}{\sqrt{2\pi }}\int _{\mathbb {R}}f(x)e^{-x^2/2}\,\textrm{d}x\quad \mathrm {a.s.}\end{aligned}$$
1
log
s
n
2
∑
k
=
1
n
σ
k
+
1
2
s
k
2
f
S
k
s
k
→
1
2
π
∫
R
f
(
x
)
e
-
x
2
/
2
d
x
a
.
s
.
for any almost everywhere continuous function $$f: {\mathbb R} \rightarrow {\mathbb R}$$
f
:
R
→
R
satisfying $$|f(x)|\le e^{\gamma x^2}$$
|
f
(
x
)
|
≤
e
γ
x
2
, $$\gamma <1/2$$
γ
<
1
/
2
. We also show that replacing the o in (1) by O, relation (2) becomes generally false. Finally, in the case when (1) is not assumed, we give an optimal condition for (2) in terms of the remainder term in the Wiener approximation of the partial sum process $$\{S_n, \, n\ge 1\}$$
{
S
n
,
n
≥
1
}
by a Wiener process.
Funder
Nemzeti Kutatási Fejlesztési és Innovációs Hivatal
Austrian Science Fund
Publisher
Springer Science and Business Media LLC
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability
Reference21 articles.
1. Atlagh, M.: Théorème central limite presque sûr et loi du logarithme itéré pour des sommes de variables aléatoires indépendantes (French) [Almost sure central limit theorem and associated law of the iterated logarithm for sums of independent random variables]. CR Acad. Sci. Paris Sér. I Math. 316(9), 929–933 (1993)
2. Atlagh, M., Weber, M.: Un théorème central limite presque sûr relatif à des sous-suites (French) [An almost sure central limit theorem relative to subsequences]. CR Acad. Sci. Paris Sér. I Math. 315(2), 203–206 (1992)
3. Berkes, I.: On the almost sure central limit theorem and domains of attraction. Probab. Theory Rel. Fields 102, 1–18 (1995)
4. Berkes, I., Csáki, E.: A universal result in almost sure central limit theory. Stoch. Proc. Appl. 94, 105–134 (2001)
5. Berkes, I., Csáki, E., Horváth, L.: Almost sure central limit theorems under minimal conditions. Stat. Prob. Letters 37, 67–76 (1998)