On the Normalized Laplacian Spectra of Random Geometric Graphs

Author:

Hamidouche Mounia,Cottatellucci LauraORCID,Avrachenkov Konstantin

Abstract

AbstractIn this work, we study the spectrum of the normalized Laplacian and its regularized version for random geometric graphs (RGGs) in various scaling regimes. Two scaling regimes are of special interest, the connectivity and the thermodynamic regime. In the connectivity regime, the average vertex degree grows logarithmically in the graph size or faster. In the thermodynamic regime, the average vertex degree is a constant. We introduce a deterministic geometric graph (DGG) with nodes in a grid and provide an upper bound to the probability that the Hilbert–Schmidt norm of the difference between the normalized Laplacian matrices of the RGG and DGG is greater than a certain threshold in both the connectivity and thermodynamic regime. Using this result, we show that the RGG and DGG normalized Laplacian matrices are asymptotically equivalent with high probability (w.h.p.) in the full range of the connectivity regime. The equivalence is even stronger and holds almost surely when the average vertex degree $$a_n$$ a n satisfies the inequality $$a_n > 24 \log (n).$$ a n > 24 log ( n ) . Therefore, we use the regular structure of the DGG to show that the limiting eigenvalue distribution of the RGG normalized Laplacian matrix converges to a distribution with a Dirac atomic measure at zero. In the thermodynamic regime, we approximate the eigenvalues of the regularized normalized Laplacian matrix of the RGG by the eigenvalues of the DGG regularized normalized Laplacian and we provide an error bound which is valid w.h.p. and depends upon the average vertex degree.

Funder

Investments for the Future Program

Publisher

Springer Science and Business Media LLC

Subject

Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3