Author:
Cipriani Alessandra,de Graaff Jan,Ruszel Wioletta M.
Abstract
Abstract
In this paper we investigate scaling limits of the odometer in divisible sandpiles on d-dimensional tori following up the works of Chiarini et al. (Odometer of long-range sandpiles in the torus: mean behaviour and scaling limits, 2018), Cipriani et al. (Probab Theory Relat Fields 172:829–868, 2017; Stoch Process Appl 128(9):3054–3081, 2018). Relaxing the assumption of independence of the weights of the divisible sandpile, we generate generalized Gaussian fields in the limit by specifying the Fourier multiplier of their covariance kernel. In particular, using a Fourier multiplier approach, we can recover fractional Gaussian fields of the form $$(-\varDelta )^{-s/2} W$$
(
-
Δ
)
-
s
/
2
W
for $$s>2$$
s
>
2
and W a spatial white noise on the d-dimensional unit torus.
Publisher
Springer Science and Business Media LLC
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability
Reference16 articles.
1. Abächerli, A.: Local picture and level-set percolation of the Gaussian free field on a large discrete torus. Stoch. Process. Appl. (2018).
https://doi.org/10.1016/j.spa.2018.09.017
2. Bak, P., Tang, C., Wiesenfeld, K.: Self-organized criticality: an explanation of the $$1/f$$ noise. Phys. Rev. Lett. 59(4), 381 (1987)
3. Chiarini, L., Jara, M., Ruszel, W.M.: Odometer of long-range sandpiles in the torus: mean behaviour and scaling limits (2018). arXiv preprint
arXiv:1808.06078
4. Cipriani, A., Hazra, R.S., Ruszel, W.M.: Scaling limit of the odometer in divisible sandpiles. Probab. Theory Relat. Fields 172, 829–868 (2017). Kindly check and confirm the edit made in the Reference [4].
5. Cipriani, A., Dan, B., Hazra, R.S.: The scaling limit of the membrane model (2018). arXiv preprint
arXiv:1801.05663
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献