Author:
Pratelli Luca,Rigo Pietro
Abstract
AbstractFor each $$n\ge 0$$
n
≥
0
, let $$\mu _n$$
μ
n
be a tight probability measure on the Borel $$\sigma $$
σ
-field of a metric space S. Let $$(T,{\mathcal {C}})$$
(
T
,
C
)
be a measurable space such that the diagonal $$\bigl \{(t,t):t\in T\bigr \}$$
{
(
t
,
t
)
:
t
∈
T
}
belongs to $${\mathcal {C}}\otimes {\mathcal {C}}$$
C
⊗
C
. Fix a measurable function $$g:S\rightarrow T$$
g
:
S
→
T
and suppose $$\mu _n=\mu _0$$
μ
n
=
μ
0
on $$g^{-1}({\mathcal {C}})$$
g
-
1
(
C
)
for all $$n\ge 0$$
n
≥
0
. Necessary and sufficient conditions for the existence of S-valued random variables $$X_n$$
X
n
, defined on the same probability space and satisfying $$\begin{aligned} X_n\overset{\text {a.s.}}{\longrightarrow }X_0,\quad X_n\sim \mu _n\,\text { and } \,g(X_n)=g(X_0)\,\text { for all }n\ge 0, \end{aligned}$$
X
n
⟶
a.s.
X
0
,
X
n
∼
μ
n
and
g
(
X
n
)
=
g
(
X
0
)
for all
n
≥
0
,
are given. Such conditions are then applied to several examples. The tightness condition on $$\mu _0$$
μ
0
can be dropped at the price of some assumptions on S and g.
Publisher
Springer Science and Business Media LLC
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability
Reference24 articles.
1. Beiglbock, M., Lacker, D.: Denseness of adapted processes among causal couplings (2020). arXiv:1805.03185v3
2. Berti, P., Pratelli, L., Rigo, P.: Limit theorems for a class of identically distributed random variables. Ann. Probab. 32, 2029–2052 (2004)
3. Berti, P., Pratelli, L., Rigo, P.: Skorohod representation on a given probability space. Prob. Theory Relat. Fields 137, 277–288 (2007)
4. Berti, P., Pratelli, L., Rigo, P.: A Skorohod representation theorem for uniform distance. Prob. Theory Relat. Fields 150, 321–335 (2011)
5. Berti, P., Pratelli, L., Rigo, P.: A Skorohod representation theorem without separability. Electron. Commun. Probab. 18, 1–12 (2013)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献