Author:
Ren Lecheng,Spradlin Marcus,Vergu Cristian,Volovich Anastasia
Abstract
Abstract
Recently in arXiv:2012.05599 Rudenko presented a formula for the volume of hyperbolic orthoschemes in terms of alternating polylogarithms. We use this result to provide an explicit analytic result for the one-loop scalar n-gon Feynman integral in n dimensions, for even n, with massless or massive internal and external edges. Furthermore, we evaluate the general six-dimensional hexagon integral in terms of classical polylogarithms.
Publisher
Springer Science and Business Media LLC
Reference45 articles.
1. A.C.-T. Wu, On the Analytic Properties of the 4-Point Function in Perturbation Theory, in Matematisk-fysiske Meddelelser udgivet af Det Kongelige Dnaske Videnskabernes Selskab 33, Munksgaard (1961), http://gymarkiv.sdu.dk/MFM/kdvs/mfm%2030-39/mfm-33-3.pdf.
2. G. ’t Hooft and M.J.G. Veltman, Scalar One Loop Integrals, Nucl. Phys. B 153 (1979) 365 [INSPIRE].
3. A. Denner, U. Nierste and R. Scharf, A Compact expression for the scalar one loop four point function, Nucl. Phys. B 367 (1991) 637 [INSPIRE].
4. A. Hodges, The Box Integrals in Momentum-Twistor Geometry, JHEP 08 (2013) 051 [arXiv:1004.3323] [INSPIRE].
5. D. Nandan, M.F. Paulos, M. Spradlin and A. Volovich, Star Integrals, Convolutions and Simplices, JHEP 05 (2013) 105 [arXiv:1301.2500] [INSPIRE].