Scope of self-interacting thermal WIMPs in a minimal U(1)D extension and its future prospects

Author:

Barman Rahool Kumar,Bhattacherjee Biplob,Chatterjee Arindam,Choudhury Arghya,Gupta Aritra

Abstract

Abstract In this work we have considered a minimal extension of Standard Model by a local U(1) gauge group in order to accommodate a stable (fermionic) Dark Matter (DM) candidate. We have focussed on parameter regions where DM possesses adequate self-interaction, owing to the presence of a light scalar mediator (the dark Higgs), alleviating some of the tensions in the small-scale structures. We have studied the scenario in the light of a variety of data, mostly from dark matter direct searches, collider searches and flavor physics experiments, with an attempt to constrain the interactions of the standard model (SM) particles with the ones in the Dark Sector (DS). Assuming a small gauge kinetic mixing parameter, we find that for rather heavy DM the most stringent bound on the mixing angle of the Dark Higgs with the SM Higgs boson comes from dark matter direct detection experiments, while for lighter DM, LHC constraints become more relevant. Note that, due to the presence of very light mediators, the effective operator approach to the direct detection is inapplicable here and these constraints have been re-evaluated for our scenario. In addition, we find that the smallness of the relevant portal couplings, as dictated by data, critically suppress the viability of DM production by the standard “freeze-out” mechanism in such simplified scenarios. In particular, the viable DM masses are $$ \lesssim \mathcal{O}(2) $$ O 2 GeV i.e. in the regions where direct detection limits tend to become weak. For heavier DM with large self-interactions, we hence conclude that non-thermal production mechanisms are favored. Lastly, future collider reach of such a simplified scenario has also been studied in detail.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3