Author:
Bonetti Federico,Minasian Ruben,Camell Valentí Vall,Weck Peter
Abstract
Abstract
In this paper, we present a unified perspective on sphere consistent truncations based on the classical geometric properties of sphere bundles. The backbone of our approach is the global angular form for the sphere. A universal formula for the Kaluza-Klein ansatz of the flux threading the n-sphere captures the full nonabelian isometry group SO(n + 1) and scalar deformations associated to the coset SL(n + 1, ℝ)/SO(n + 1). In all cases, the scalars enter the ansatz in a shift by an exact form. We find that the latter can be completely fixed by imposing mild conditions, motivated by supersymmetry, on the scalar potential arising from dimensional reduction of the higher dimensional theory. We comment on the role of the global angular form in the derivation of the topological couplings of the lower-dimensional theory, and on how this perspective could provide inroads into the study of consistent truncations with less supersymmetry.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献