Lattice quantum Villain Hamiltonians: compact scalars, U(1) gauge theories, fracton models and quantum Ising model dualities

Author:

Fazza Lucca,Sulejmanpasic Tin

Abstract

Abstract We construct Villain Hamiltonians for compact scalars and abelian gauge theories. The Villain integers are promoted to integral spectrum operators, whose canonical conjugates are naturally compact scalars. Further, depending on the theory, these conjugate operators can be interpreted as (higher-form) gauge fields. If a gauge symmetry is imposed on these dual gauge fields, a natural constraint on the Villain operator leads to the absence of defects (e.g. vortices, monopoles,…). These lattice models therefore have the same symmetry and anomaly structure as their corresponding continuum models. Moreover they can be formulated in a way that makes the well-know dualities look manifest, e.g. a compact scalar in 2d has a T-duality, in 3d is dual to a U(1) gauge theory, etc. We further discuss the gauged version of compact scalars on the lattice, its anomalies and solution, as well as a particular limit of the gauged XY model at strong coupling which reduces to the transverse-field Ising model. The construction for higher-form gauge theories is similar. We apply these ideas to the constructions of some models which are of interest to fracton physics, in particular the XY-plaquette model and the tensor gauge field model. The XY-plaquette model in 2+1d coupled to a tensor gauge fields at strong gauge coupling is also exactly described by a transverse field quantum J1J2 Ising model with J1 = 2J2, and discuss the phase structure of such models.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3