Probing dark photons from a light scalar at Belle II

Author:

Cheung KingmanORCID,Kim YongkyuORCID,Kwon YoungjoonORCID,Ouseph C. J.ORCID,Soffer AbnerORCID,Wang Zeren SimonORCID

Abstract

Abstract In the minimal U(1) extension of the Standard Model (SM), a new gauge boson referred to as “dark photon” is predicted. The dark-photon mass can be generated from an additional Higgs mechanism associated with a dark scalar boson. At B-factories such as Belle II, large numbers of B-mesons are produced and can decay to a kaon plus the dark scalar via the latter’s mixing with the SM Higgs boson. We evaluate the sensitivity of Belle II for the case in which the dark scalar decays exclusively into a pair of dark photons via the new U(1) gauge coupling, and the dark photons are long lived owing to a small kinetic mixing ϵ. We study the experimental signature in which each dark photon decays into a pair of charged leptons, pions, or kaons, resulting in a pair of displaced vertices, and argue that the search is essentially background-free. We perform detailed Monte-Carlo simulations to determine the expected number of signal events at Belle II with an integrated luminosity of 50 ab1, taking into account the efficiencies for both final-state-particle identification and displaced tracking. We find that for experimentally allowed values of the scalar mixing angle and kinematically allowed dark-photon and dark-scalar masses, the proposed search is uniquely sensitive to the medium-ϵ regime, which is currently mostly unexcluded by experiments.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3