Abstract
Abstract
f (R) supergravity is known to contain a ghost mode associated with higher-derivative terms if it contains R
n
with n greater than two. We remove the ghost in f (R) supergravity by introducing auxiliary gauge field to absorb the ghost. We dub this method as the ghostbuster mechanism [1]. We show that the mechanism removes the ghost super-multiplet but also terms including R
n
with n ≥ 3, after integrating out auxiliary degrees of freedom. For pure supergravity case, there appears an instability in the resultant scalar potential. We then show that the instability of the scalar potential can be cured by introducing matter couplings in such a way that the system has a stable potential.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Reference73 articles.
1. T. Fujimori, M. Nitta and Y. Yamada, Ghostbusters in higher derivative supersymmetric theories: who is afraid of propagating auxiliary fields?, JHEP 09 (2016) 106 [arXiv:1608.01843] [INSPIRE].
2. M. Ostrogradski, Mémoires sur les équations différentielles, relatives au problème des isopérimètres (in French), Mem. Ac. St. Petersbourg 6 (1850) 385 [INSPIRE].
3. R.P. Woodard, Avoiding dark energy with 1/r modifications of gravity, Lect. Notes Phys. 720 (2007) 403 [astro-ph/0601672] [INSPIRE].
4. G.W. Horndeski, Second-order scalar-tensor field equations in a four-dimensional space, Int. J. Theor. Phys. 10 (1974) 363 [INSPIRE].
5. T. Kobayashi, M. Yamaguchi and J. Yokoyama, Generalized G-inflation: inflation with the most general second-order field equations, Prog. Theor. Phys. 126 (2011) 511 [arXiv:1105.5723] [INSPIRE].
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献