Two-loop tensor integral coefficients in OpenLoops

Author:

Pozzorini Stefano,Schär Natalie,Zoller Max F.

Abstract

Abstract We present a new and fully general algorithm for the automated construction of the integrands of two-loop scattering amplitudes. This is achieved through a generalisation of the open-loops method to two loops. The core of the algorithm consists of a numerical recursion, where the various building blocks of two-loop diagrams are connected to each other through process-independent operations that depend only on the Feynman rules of the model at hand. This recursion is implemented in terms of tensor coefficients that encode the polynomial dependence of loop numerators on the two independent loop momenta. The resulting coefficients are ready to be combined with corresponding tensor integrals to form scattering probability densities at two loops. To optimise CPU efficiency we have compared several algorithmic options identifying one that outperforms naive solutions by two orders of magnitude. This new algorithm is implemented in the OpenLoops framework in a fully automated way for two-loop QED and QCD corrections to any Standard Model process. The technical performance is discussed in detail for several 2 2 and 2 3 processes with up to order 105 two-loop diagrams. We find that the CPU cost scales linearly with the number of two-loop diagrams and is comparable to the cost of corresponding real-virtual ingredients in a NNLO calculation. This new algorithm constitutes a key building block for the construction of an automated generator of scattering amplitudes at two loops.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. FeynCalc 10: Do multiloop integrals dream of computer codes?;Computer Physics Communications;2025-01

2. Rational terms of UV origin to all loop orders;Journal of High Energy Physics;2024-07-23

3. Event generators for high-energy physics experiments;SciPost Physics;2024-05-24

4. Locally finite two-loop QCD amplitudes from IR universality for electroweak production;Journal of High Energy Physics;2023-05-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3