Resummation for (boosted) top-quark pair production at NNLO+NNLL′ in QCD

Author:

Czakon Michal,Ferroglia Andrea,Heymes David,Mitov Alexander,Pecjak Ben D.,Scott Darren J.ORCID,Wang Xing,Yang Li Lin

Abstract

Abstract We construct predictions for top quark pair differential distributions at hadron colliders that combine state-of-the-art NNLO QCD calculations with double resummation at NNLL accuracy of threshold logarithms arising from soft gluon emissions and of small mass logarithms. This is the first time a resummed calculation at full NNLO+NNLL accuracy in QCD for a process with non-trivial color structure has been completed at the differential level. Of main interest to us is the stability of the $$ {M}_{t\overline{t}} $$ M t t ¯ and top-quark p T distributions in the boosted regime where fixed order calculations may become strongly dependent on the choice of dynamic scales. With the help of numeric and analytic arguments we confirm that the choice for the factorization and renormalization scales advocated recently by some of the authors is indeed optimal. We further derive a set of optimized kinematics-dependent scales for the matching functions which appear in the resummed calculations. Our NNLO+NNLL prediction for the top-pair invariant mass is significantly less sensitive to the choice of factorization scale than the fixed order prediction, even at NNLO. Notably, the resummed and fixed order calculations are in nearly perfect agreement with each other in the full $$ {M}_{t\overline{t}} $$ M t t ¯ range when the optimal dynamic scale is used. For the top-quark p T distribution the resummation performed here has less of an impact and instead we find that upgrading the matching with fixed-order from NLO+NNLL to NNLO+NNLL to be an important effect, a point to be kept in mind when using NLO-based Monte Carlo event generators to calculate this distribution.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3