Thermal equilibrium in string theory in the Hagedorn phase

Author:

Brustein Ram,Zigdon Yoav

Abstract

Abstract In string theory, a thermal state is described by compactifying Euclidean time on a thermal circle $$ {S}_{\beta}^1 $$ S β 1 , of fixed circumference. However, this circumference is a dynamical field which could vary in space, therefore thermal equilibrium is not guaranteed. We discuss a thermal state of type II string theory near and above the Hagedorn temperature and show that the circumference of the thermal circle can indeed be fixed and stabilized in the presence of a uniform isotropic flux. We solve the equations of motion derived from an action that reproduces the tree-level string S-matrix. We find solutions with the topologies of $$ {S}_{\beta}^1 $$ S β 1 × S2×$$ \mathcal{M} $$ M d−2 at a fixed temperature, which include a space-filling winding-mode condensate and a uniform Neveu-Schwarz Neveu-Schwarz flux supported on $$ {S}_{\beta}^1 $$ S β 1 × S2. The solutions that we find have either a linear dilaton or a constant dilaton, in which case, we find solutions with either a cosmological constant or a Ramond-Ramond flux. We then compare our solutions to the cigar and cylinder backgrounds associated with the SL(2, ℝ)/U(1) coset theory, which include a winding-mode condensate but without flux. We also compare and contrast our solutions with the non-uniform Horowitz-Polchinski solution, which also possesses a winding-mode condensate and is characterized by an approximate thermal equilibrium near the Hagedorn temperature.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fluid model of a black hole-string transition;Physical Review D;2023-06-08

2. On the entropy of strings and branes;Journal of High Energy Physics;2022-10-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3