Abstract
Abstract
We study the origin of the recently proposed effective theory of stress tensor exchanges based on reparametrization modes, that has been used to efficiently compute Virasoro identity blocks at large central charge. We first provide a derivation of the nonlinear Alekseev-Shatashvili action governing these reparametrization modes, and argue that it should be interpreted as the generating functional of stress tensor correlations on manifolds related to the plane by conformal transformations. In addition, we demonstrate that the rules previously prescribed with the reparametrization formalism for computing Virasoro identity blocks naturally emerge when evaluating Feynman diagrams associated with stress tensor exchanges between pairs of external primary operators. We make a few comments on the connection of these results to gravitational theories and holography.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献