Mirror twin Higgs cosmology: constraints and a possible resolution to the H0 and S8 tensions

Author:

Bansal Saurabh,Kim Jeong Han,Kolda Christopher,Low Matthew,Tsai Yuhsin

Abstract

Abstract The mirror twin Higgs model (MTH) is a solution to the Higgs hierarchy problem that provides well-predicted cosmological signatures with only three extra parameters: the temperature of the twin sector, the abundance of twin baryons, and the vacuum expectation value (VEV) of twin electroweak symmetry breaking. These parameters specify the behavior of twin radiation and the acoustic oscillations of twin baryons, which lead to testable effects on the cosmic microwave background (CMB) and large-scale structure (LSS). While collider searches can only probe the twin VEV, through a fit to cosmological data we show that the existing CMB (Planck18 TTTEEE+lowE+lowT+lensing) and LSS (KV450) data already provide useful constraints on the remaining MTH parameters. Additionally, we show that the presence of twin radiation in this model can raise the Hubble constant H0 while the scattering twin baryons can reduce the matter fluctuations S8, which helps to relax the observed H0 and S8 tensions simultaneously. This scenario is different from the typical ΛCDM + ∆Neff model, in which extra radiation helps with the Hubble tension but worsens the S8 tension. For instance, when including the SH0ES and 2013 Planck SZ data in the fit, we find that a universe with ≳ 20% of the dark matter comprised of twin baryons is preferred over ΛCDM by 4σ. If the twin sector is indeed responsible for resolving the H0 and S8 tensions, future measurements from the Euclid satellite and CMB Stage 4 experiment will further measure the twin parameters to O(1 10%)-level precision. Our study demonstrates how models with hidden naturalness can potentially be probed using precision cosmological data.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3