Impact of high-scale Seesaw and Leptogenesis on inflationary tensor perturbations as detectable gravitational waves

Author:

Berbig Maximilian,Ghoshal AnishORCID

Abstract

Abstract We discuss the damping of inflationary gravitational waves (GW) that re-enter the horizon before or during an epoch, where the energy budget of the universe is dominated by an unstable right handed neutrino (RHN), whose out of equilibrium decay releases entropy. Starting from the minimal Standard Model extension, motivated by the observed neutrino mass scale, with nothing more than 3 RHN for the Seesaw mechanism, we discuss the conditions for high scale leptogenesis assuming a thermal initial population of RHN. We further address the associated production of potentially light non-thermal dark matter and a potential component of dark radiation from the same RHN decay. One of our main findings is that the frequency, above which the damping of the tensor modes is potentially observable, is completely determined by successful leptogenesis and a Davidson-Ibarra type bound to be at around 0.1 Hz. To quantify the detection prospects of this GW background for various proposed interferometers such as AEDGE, BBO, DECIGO, Einstein Telescope or LISA we compute the signal-to-noise ratio (SNR). This allows us to investigate the viable parameter space of our model, spanned by the mass of the decaying RHN $$ {M}_1\gtrsim 2.4\times {10}^8\textrm{GeV}\cdot \sqrt{2\times {10}^{-7}\textrm{eV}/{\tilde{m}}_1} $$ M 1 2.4 × 10 8 GeV 2 × 10 7 eV / m ~ 1 (for leptogenesis) and the effective neutrino mass parameterizing its decay width $$ {\tilde{m}}_1 $$ m ~ 1 < 2.9 × 107 eV (for RHN matter domination). Thus gravitational wave astronomy is a novel way to probe both the Seesaw and the leptogenesis scale, which are completely inaccessible to laboratory experiments in high scale scenarios.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Reference229 articles.

1. Kamiokande collaboration, Solar neutrino data covering solar cycle 22, Phys. Rev. Lett. 77 (1996) 1683 [INSPIRE].

2. Super-Kamiokande collaboration, Constraints on neutrino oscillations using 1258 days of Super-Kamiokande solar neutrino data, Phys. Rev. Lett. 86 (2001) 5656 [hep-ex/0103033] [INSPIRE].

3. Super-Kamiokande collaboration, Determination of solar neutrino oscillation parameters using 1496 days of Super-Kamiokande I data, Phys. Lett. B 539 (2002) 179 [hep-ex/0205075] [INSPIRE].

4. SNO collaboration, Direct evidence for neutrino flavor transformation from neutral current interactions in the Sudbury Neutrino Observatory, Phys. Rev. Lett. 89 (2002) 011301 [nucl-ex/0204008] [INSPIRE].

5. Super-Kamiokande collaboration, A Measurement of atmospheric neutrino oscillation parameters by SUPER-KAMIOKANDE I, Phys. Rev. D 71 (2005) 112005 [hep-ex/0501064] [INSPIRE].

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3