Abstract
Abstract
The ghost-free bimetric theory describes interactions of gravity with another spin-2 field in terms of two Lorentzian metrics. However, if the two metrics do not admit compatible notions of space and time, the formulation of the initial value problem becomes problematic. Furthermore, the interaction potential is given in terms of the square root of a matrix which is in general nonunique and possibly nonreal. In this paper we show that both these issues are evaded by requiring reality and general covariance of the equations. First we prove that the reality of the square root matrix leads to a classification of the allowed metrics in terms of the intersections of their null cones. Then, the requirement of general covariance further restricts the allowed metrics to geometries that admit compatible notions of space and time. It also selects a unique definition of the square root matrix. The restrictions are compatible with the equations of motion. These results ensure that the ghost-free bimetric theory can be defined unambiguously and that the two metrics always admit compatible 3+1 decompositions, at least locally. In particular, these considerations rule out certain solutions of massive gravity with locally Closed Causal Curves, which have been used to argue that the theory is acausal.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Reference70 articles.
1. M. Fierz and W. Pauli, On relativistic wave equations for particles of arbitrary spin in an electromagnetic field, Proc. Roy. Soc. Lond. A 173 (1939) 211.
2. D.G. Boulware and S. Deser, Can gravitation have a finite range?, Phys. Rev. D 6 (1972) 3368 [INSPIRE].
3. C.J. Isham, A. Salam and J.A. Strathdee, F-dominance of gravity, Phys. Rev. D 3 (1971) 867 [INSPIRE].
4. B. Zumino, Effective Lagrangians and Broken Symmetries, in Lectures on Elementary Particles and Quantum Field Theory, volume 2, Brandeis University, Cambridge, MA, U.S.A., (1970), pp. 437-500.
5. N. Boulanger, T. Damour, L. Gualtieri and M. Henneaux, Inconsistency of interacting, multigraviton theories, Nucl. Phys. B 597 (2001) 127 [hep-th/0007220] [INSPIRE].
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献