Directed flow of D mesons at RHIC and LHC: non-perturbative dynamics, longitudinal bulk matter asymmetry and electromagnetic fields

Author:

Oliva LuciaORCID,Plumari SalvatoreORCID,Greco VincenzoORCID

Abstract

Abstract We present a study of the directed flow v1 for D mesons discussing both the impact of initial vorticity and electromagnetic field. Recent studies predicted that v1 for D mesons is expected to be surprisingly much larger than that of light charged hadrons; we clarify that this is due to a different mechanism leading to the formation of a directed flow with respect to the one of the bulk matter at both relativistic and non-relativistic energies. We point out that the very large v1 for D mesons can be generated only if there is a longitudinal asymmetry between the bulk matter and the charm quarks and if the latter have a large non-perturbative interaction in the QGP medium. A quite good agreement with the data of STAR and ALICE is obtained if the diffusion coefficient able to correctly predict the RAA(pT), v2(pT) and v3(pT) of D meson is employed. Furthermore, the mechanism for the build-up of the v1(y) is associated to a quite small formation time that can be expected to be more sensitive to the initial high-temperature dependence of the charm diffusion coefficient.We discuss also the splitting of v1 for D0 and $$ {\overline{D}}^0 $$ D ¯ 0 due to the electromagnetic field that is again much larger than the one observed for charged particles and in agreement with the data by STAR that have however still error bars comparable with the splitting itself, while at LHC standard electromagnetic profile assuming a constant conductivity is not able to account for the huge splitting observed.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3