Abstract
Abstract
BPS states in supersymmetric theories can admit additional algebro-geometric structures in their spectra, described as quiver Yangian algebras. Equivariant fixed points on the quiver variety are interpreted as vectors populating a representation module, and matrix elements for the generators are then defined as Duistermaat-Heckman integrals in the vicinity of these points. The well-known wall-crossing phenomena are that the fixed point spectrum establishes a dependence on the stability (Fayet-Illiopolous) parameters ζ, jumping abruptly across the walls of marginal stability, which divide the ζ-space into a collection of stability chambers — “phases” of the theory. The standard construction of the quiver Yangian algebra relies heavily on the molten crystal model, valid in a sole cyclic chamber where all the ζ-parameters have the same sign. We propose to lift this restriction and investigate the effects of the wall-crossing phenomena on the quiver Yangian algebra and its representations — starting with the example of affine super-Yangian $${\text{Y}}\left({\widehat{\mathfrak{g}\mathfrak{l}}}_{1\left|1\right.}\right)$$. In addition to the molten crystal construction more general atomic structures appear, in other non-cyclic phases (chambers of the ζ-space). We call them glasses and also divide in a few different classes. For some of the new phases we manage to associate an algebraic structure again as a representation of the same affine Yangian $${\text{Y}}\left({\widehat{\mathfrak{g}\mathfrak{l}}}_{1\left|1\right.}\right)$$. This observation supports an earlier conjecture that the BPS algebraic structures can be considered as new wall-crossing invariants.
Publisher
Springer Science and Business Media LLC
Reference69 articles.
1. M. Yamazaki, Crystal Melting and Wall Crossing Phenomena, Int. J. Mod. Phys. A 26 (2011) 1097 [arXiv:1002.1709] [INSPIRE].
2. E. Andriyash, F. Denef, D.L. Jafferis and G.W. Moore, Wall-crossing from supersymmetric galaxies, JHEP 01 (2012) 115 [arXiv:1008.0030] [INSPIRE].
3. S. Cecotti and C. Vafa, BPS Wall Crossing and Topological Strings, arXiv:0910.2615 [INSPIRE].
4. M. Aganagic, H. Ooguri, C. Vafa and M. Yamazaki, Wall Crossing and M-theory, Publ. Res. Inst. Math. Sci. Kyoto 47 (2011) 569 [arXiv:0908.1194] [INSPIRE].
5. M. Kontsevich and Y. Soibelman, Stability structures, motivic Donaldson-Thomas invariants and cluster transformations, arXiv:0811.2435 [INSPIRE].
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献