Author:
Chen Mu-Chun,Takhistov Volodymyr
Abstract
Abstract
The appearance of scalar/moduli fields in the early universe, as motivated by string theory, naturally leads to non-thermal “moduli cosmology”. Such cosmology provides a consistent framework where the generation of radiation, baryons, and dark matter can occur while maintaining successful Big Bang Nucleosynthesis and avoiding the cosmological moduli problem. We present a relatively economical construction with moduli cosmology, building on a variety of string-inspired components (e.g. supersymmetry, discrete symmetries, Green-Schwarz anomaly cancellation). We address a range of outstanding problems of particle physics and cosmology simultaneously, including the fermion mass hierarchy and flavor puzzle, the smallness of neutrino masses, baryogenesis and dark matter. Our setup, based on discrete ℤ
12
R
symmetry and anomalous U(1)
A
, is void of the usual issues plaguing the Minimal Supersymmetric Standard Model, i.e. the μ-problem and the overly-rapid proton decay due to dimension-4,-5 operators. The model is compatible with SU(5) Grand Unification. The smallness of Dirac neutrino masses is automatically established by requiring the cancellation of mixed gravitational-gauge anomalies. The decay of the moduli field provides a common origin for the baryon number and dark matter abundance, explaining the observed cosmic coincidences, Ω
B
∼ Ω
DM
.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献