Abstract
Abstract
We compute, in the large N limit, the topologically twisted index of the 3d T[SU(N)] theory, namely the partition function on $$ {\Sigma}_{\mathfrak{g}}\times {S}^1 $$
Σ
g
×
S
1
, with a topological twist on the Riemann surface $$ {\Sigma}_{\mathfrak{g}} $$
Σ
g
. To provide an expression for this quantity, we take advantage of some recent results obtained for five dimensional quiver gauge theories. In case of a universal twist, we correctly reproduce the entropy of the universal black hole that can be embedded in the holographically dual solution.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Reference55 articles.
1. F. Benini and A. Zaffaroni, A topologically twisted index for three-dimensional supersymmetric theories, JHEP 07 (2015) 127 [arXiv:1504.03698] [INSPIRE].
2. F. Benini and A. Zaffaroni, Supersymmetric partition functions on Riemann surfaces, Proc. Symp. Pure Math. 96 (2017) 13 [arXiv:1605.06120] [INSPIRE].
3. F. Benini, K. Hristov and A. Zaffaroni, Black hole microstates in AdS4 from supersymmetric localization, JHEP 05 (2016) 054 [arXiv:1511.04085] [INSPIRE].
4. S. M. Hosseini and A. Zaffaroni, Large N matrix models for 3d $$ \mathcal{N} $$ = 2 theories: twisted index, free energy and black holes, JHEP 08 (2016) 064 [arXiv:1604.03122] [INSPIRE].
5. S. M. Hosseini and N. Mekareeya, Large N topologically twisted index: necklace quivers, dualities, and Sasaki-Einstein spaces, JHEP 08 (2016) 089 [arXiv:1604.03397] [INSPIRE].
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献