3d Abelian gauge theories at the boundary

Author:

Di Pietro Lorenzo,Gaiotto Davide,Lauria Edoardo,Wu JingxiangORCID

Abstract

Abstract A four-dimensional Abelian gauge field can be coupled to a 3d CFT with a U(1) symmetry living on a boundary. This coupling gives rise to a continuous family of boundary conformal field theories (BCFT) parametrized by the gauge coupling τ in the upper-half plane and by the choice of the CFT in the decoupling limit τ → ∞. Upon performing an SL(2, ℤ) transformation in the bulk and going to the decoupling limit in the new frame, one finds a different 3d CFT on the boundary, related to the original one by Witten’s SL(2, ℤ) action [1]. In particular the cusps on the real τ axis correspond to the 3d gauging of the original CFT. We study general properties of this BCFT. We show how to express bulk one and two-point functions, and the hemisphere free-energy, in terms of the two-point functions of the boundary electric and magnetic currents. We then consider the case in which the 3d CFT is one Dirac fermion. Thanks to 3d dualities this BCFT is mapped to itself by a bulk S transformation, and it also admits a decoupling limit which gives the O(2) model on the boundary. We compute scaling dimensions of boundary operators and the hemisphere free-energy up to two loops. Using an S-duality improved ansatz, we extrapolate the perturbative results and find good approximations to the observables of the O(2) model. We also consider examples with other theories on the boundary, such as large-N f Dirac fermions — for which the extrapolation to strong coupling can be done exactly order-by-order in 1/N f — and a free complex scalar.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3